CSCCO09 Week 5 Notes

Security:

You have absolutely no control on the client.
Users can modify the frontend code.

Cookies:

Introduction to cookies:

Cookies are text files with small pieces of key-value pairs of data that are used to
identify your computer as you use a computer network. Data stored in a cookie is
created by the server upon your connection. This data is labeled with an ID unique to
you and your computer. When the cookie is exchanged between your computer and the
network server, the server reads the ID and knows what information to specifically serve
to you.

Cookies are embedded in the headers of HTTP requests and responses.

I.e. Cookies are key/value pairs sent back and forth between the browser and the server
in HTTP request and response.

Cookies:

- Contain text data (Up to 4kb)

- May or may not have an expiration date

- Are bound to a domain name and a path.

I.e. Every website has cookies and your browser links/connects that website with
those cookies.

- May have security flags

- Can be manipulated from the client and the server

Cookies are good for:

- Shopping cart

- Browsing preferences

- User authentication

- Tracking and advertisement

The purpose of the computer cookie is to help the website keep track of your visits and
activity. For example, many online retailers use cookies to keep track of the items in a
user’s shopping cart as they explore the site. Without cookies, your shopping cart would
reset to zero every time you clicked a new link on the site.

A website might also use cookies to keep a record of your most recent visit or to record
your login information. Many people find this useful so that they can store passwords on
frequently used sites, or simply so they know what they have visited or downloaded in
the past.

There are 2 main types of cookies:

1. Magic Cookies:

- Magic cookies are an old computing term that refers to packets of information
that are sent and received without changes. This concept predates the modern
cookie we use today.

2. HTTP Cookies:

- HTTP cookies are a repurposed version of the magic cookie built for internet
browsing. Web browser programmer Lou Montulli used the magic cookie as
inspiration in 1994. He recreated this concept for browsers when he helped an
online shopping store fix their overloaded servers.

- HTTP cookies, or internet cookies, are built specifically for internet web browsers
to track, personalize, and save information about each user’s session.

- Cookies are created to identify you when you visit a new website. The web server
sends a short stream of identifying info to your web browser.

- Browser cookies are identified and read by name-value pairs. These tell cookies
where to be sent and what data to recall.

CSCCO09 Week 5 Notes
2

Websites use HTTP cookies to streamline your web experiences. Without cookies, you'd
have to login again after you leave a site or rebuild your shopping cart if you accidentally
close the page.

Here’s how HTTP cookies are intended to be used:

1. Session management: For example, cookies let websites recognize users and
recall their individual login information and preferences.

2. Personalization: Customized advertising is the main way cookies are used to
personalize your sessions. You may view certain items or parts of a site, and
cookies use this data to help build targeted ads that you might enjoy.

3. Tracking: Shopping sites use cookies to track items users previously viewed,
allowing the sites to suggest other goods they might like and keep items in
shopping carts while they continue shopping.

Different types of HTTP cookies:
There are 2 main types of cookies:

1. Session cookies are used only while navigating a website. They are stored in
random access memory and are never written to the hard drive.

When the session ends, session cookies are automatically deleted. They also
help the "back" button or third-party anonymizer plugins work. These plugins are
designed for specific browsers to work and help maintain user privacy.

2. Persistent cookies remain on a computer indefinitely, although many include an
expiration date and are automatically removed when that date is reached.
Persistent cookies are used primarily for authentication and tracking.

For authentication, cookies track whether a user is logged in and under what
name. They also streamline login information, so users don't have to remember
site passwords.
For tracking, cookies track multiple visits to the same site over time. For example,
some online merchants use cookies to track visits from particular users, including
the pages and products viewed. The information they gain allows them to
suggest other items that might interest visitors. Gradually, a profile is built based
on a user's browsing history on that site.
Why cookies can be dangerous:
While cookies can't infect computers with viruses or other malware, the danger lies in
their ability to track individuals' browsing histories.
First-party cookies are directly created by the website you are using. These are
generally safe, as long as you are browsing reputable websites or ones that have not
been compromised.
Third-party cookies are more troubling. They are generated by websites that are
different from the web pages users are currently surfing, usually because they're linked
to ads on that page. Visiting a site with 10 ads may generate 10 cookies, even if users
never click on those ads. Third-party cookies let advertisers or analytics companies track
an individual's browsing history across the web on any sites that contain their ads.
Zombie cookies are from a third-party and are permanently installed on the users'
computers, even when they opt not to install cookies. They also reappear after they've
been deleted. Like other third-party cookies, zombie cookies can be used by web
analytics companies to track unique individuals' browsing histories. Websites may also
use zombies to ban specific users.
Manipulating cookies:
A cookie can be modified, as long as there is no cookie flag set.
On the server side, we can use cookie in Express.
E.g. const cookie = require(‘cookie’); — Used in Express.
On the client side, we can use Document.cookie in Javascript.

CSCCO09 Week 5 Notes

Sessions:

Introduction to sessions:

A web session is a series of contiguous actions by a visitor on an individual website
within a given time frame. This could include your search engine searches, filling out a
form to receive content, scrolling on a website page, adding items to a shopping cart,
researching airfare, or which pages you viewed on a single website. Any interaction that
you have with a single website is recorded as a web session to that website property.

To track sessions, a web session ID is stored in a visitor’s browser. This session ID is
passed along with any HTTP requests that the visitor makes while on the site.

To avoid storing massive amounts of information in-browser, developers use session IDs
to store information server-side while enabling user privacy. Every time a user makes an
action or makes a request on a web application, the application sends the session ID
and cookie ID back to the server, along with a description of the action itself.

Once a web developer accrues enough information on how users traverse their site, they
can start to create very personalized, engaging experiences.

A session can be defined as a server-side storage of information that is desired to
persist throughout the user's interaction with the web site or web application.

Instead of storing large and constantly changing information via cookies in the user's
browser, only a unique identifier is stored on the client side called a session id. This
session id is passed to the web server every time the browser makes an HTTP request.
The web application pairs this session id with it's internal database and retrieves the
stored variables for use by the requested page.

General concepts of sessions:

There is a session id, a token, between the browser and the web application.

The session id should be unique and unforgeable. It is usually a long random number or
a hash.

The session id is stored in a cookie while session key/value pairs are stored on the
server.

The user can create, modify, delete the session ID in the cookie, but cannot access the
key/value pairs stored on the server.

Web Authentication:

There are several ways to do web authentication:
1. Local authentication:
- Manage username and password yourself.
l.e. A user creates an account. You store the username and password in a
database, and each time a user wants to log in, you compare the inputted
username and password to the ones you have in the database.
- How to store passwords:

e Data can be hacked
= A key is needed to store
and verify passwords

CnERIT Weak passwords have known hash
» Salted Hash Salt and hash must be stored

- Salted hash means that we’re going to add a random string (the salt) to the
password to make it strong. Each new salted password will be unique as the salt
is always unique. Then, we’ll hash the salted password. Salted hash is resistant
to brute force attacks.

CSCCO09 Week 5 Notes

Basic/Stateless Authentication:

(Standard) RFC 2617

Login and password are sent in clear (Base64 encoding) in the headers
"authorization".

Pros:
- Since there aren't many operations going on, authentication can be faster
with this method.
- Easy to implement.
- Supported by all major browsers.
Cons:

- Base64 is not the same as encryption. It's just another way to represent
data. The base64 encoded string can easily be decoded since it's sent in
plain text. This poor security feature calls for many types of attacks.
Because of this, HTTPS/SSL is absolutely essential.

- Credentials must be sent with every request.

- Users can only be logged out by rewriting the credentials with an invalid
one.

Session/Stateful Authentication:

(Standard) RFC 6265

Uses cookies.

The user enters a login and password and the frontend sends them to the
backend (POST request).

Then, the backend verifies the login/password based on information stored on
the server (usually in the database).

Then, the backend stores user information in a session.

Then, the backend grants access to resources based on the information
contained in the session.

Pros:
- Faster subsequent logins, as the credentials are not required.
- Improved user experience.
- Fairly easy to implement. Many frameworks provide this feature
out-of-the-box.
Cons:

- Cookies are sent with every request, even if it does not require
authentication

Do/Don't with passwords:
On the client side, either send passwords in the headers (automatic with basic
authentication) or in the body (POST request with session authentication). Never
send/show passwords in the URL.
On the server, store passwords as salted hash passwords only. Never store
passwords in clear or non-salted hash.

. Token-based authentication:

This method uses tokens to authenticate users instead of cookies. The user
authenticates using valid credentials and the server returns a signed token. This
token can be used for subsequent requests.

HMAC:

(Standard) RFC 2104

For each authenticated HTTP request, the frontend computes and sends a
message digest that combines the user's secret and some request arguments.
The user's password never transits back and forth except perhaps for the first
time it is exchanged.

CSCCO09 Week 5 Notes

The digest can be sent in clear. Should not store sensitive information in the
digest.

JSON Web Token:

(Standard) RFC 7519

Encodes the user’s information in a string (token) that is URL safe.

The token is usually authenticated and sometimes encrypted.

The web token can be used for stateful but yet session-less authentication.
Stateless JSON Web Token is a self-contained token which does not need any
representation on the backend.

Stateful JSON Web Token is a token which contains only part of the required
data such as session/user ID and the rest is stored on the server side.
Revoking tokens can be complicated.

. Third party authentication:

You can sign into a website through signing into another website.
Single sign-on (SSO) is an authentication scheme that allows a user to log in
with a single ID and password to any of several related, yet independent,
software systems.
There are many types of SSO, such as Pubcookie, OpenID, SAML, OAuth,
among others.
Social login is a form of single sign-on using existing information from a social
networking service such as Facebook, Twitter or Google, to sign into a third party
website instead of creating a new login account specifically for that website. It is
designed to simplify logins for end users as well as provide more and more
reliable demographic information.
OpenlD:
An HTTP based protocol that uses an identity provider to validate a user. The
user’s password is secured with one identity provider. This allows other service
providers a way to achieve SSO without requiring a password from the user.
SAML:
Is XML based.
Is used in many enterprise applications to enable enterprises to monitor who has
access to corporate resources.
OAuth 2.0:
(Standard) RFC 6749
Is JSSON based.
OAuth 2.0 is a security standard where you give one application permission to
access your data in another application. You authorize one application to access
your data, or use features in another application on your behalf, without giving
them your password. OAuth 2.0 does this by allowing a token to be issued by the
identity provider to these third party applications, with the approval of the user.
OAuth doesn’t share password data but instead uses authorization tokens to
prove an identity between consumers and service providers. OAuth is an
authentication protocol that allows you to approve one application interacting with
another on your behalf without giving away your password.
How it works:

1. The backend redirects the user to the third-party login-page.

2. The third-party asks and verifies the login/password based on the third

party user information.
3. The third party redirects the user back to the application with an OAuth
token and verifier in the url.
4. Backend verifies the token with the third party.

CSCCO09 Week 5 Notes

5. Backend starts a session.

OAuth 2.0 Flow

Resource Server Client Authorization Server / |[dP

Client requests authorization

l User is sent to login page at AS

User logs in and approves authorization

Receives authorization grant

o

Client requests access token w/ grant
0 >
»

Access token is granted

Client requests protected < o
resource w/ token

Q

Resource server validates access token

y AS sends user identity attributes .
b "

Client receives resource

(F) >

- The user's login/password never transit by the application’s frontend or backend.

